A Novel Sesquiterpenoid from Coleus xanthanthus

Shuang Xi MEI¹, Chao Ming LI¹, Hui Lan ZHENG¹, Qi Tai ZHENG², Yang LU², Han Dong SUN^{1*}

¹Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 ²Institute of Meteria Medica, Chinese Academy of Medical Sciences, Beijing 100050

Abstract: Phytochemical re-investigation of *Coleus xanthanthus* led to the isolation and identification of a novel sesquiterpenoid **1**, named as 4,5,11-trimethyl-8,9-seco-1(10),7(11)-

eremophiladien-8,12-olid-9-oic acid. The structure of **1** was elucidated by modern spectroscopic methods, especially by X-ray diffraction.

Keywords: *Coleus xanthanthus*, sesquiterpenoid, 4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophila -dien-8,12-olid 9-oic acid.

Coleus xanthanthus C.Y.Wu et Y.C.Huang is an endemic plant in Xishuangbanna of Yunnan province¹. Its chemical constituents were studied by Prof. Chao Ming LI and five diterpenoid quinones had been obtained²⁻⁴. It was reported that some diterpenoid quinones had insect anti-feeding and anti-tumor activity⁵. In order to search for more significant compounds of the plant, we did a careful phytochemical investigation. From 70% acetone extract of the aerial part of this plant, a novel sesquiterpenoid **1**, named as 4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophiladien-8,12-olid-9-oic acid, was isolated by repeated chromatography of silica gel columns. Its structure and relative configuration were elucidated by spectral methods, especially by the X-ray technique.

Compound **1** was obtained as colorless crystals (from CHCl₃), mp: 149.5~151.5°C; $[\alpha]_{D}^{25}$ +11.73 (c=0.0055, CHCl₃). IR spectrum showed the following characteristic signals, a conjugated carboxy (3092, 1654, 1633 cm⁻¹) and an α , β -unsaturated lactone (1727, 1559, 1200 cm⁻¹), which was supported by the UV spectrum (239 nm). Its ¹³C NMR spectrum indicated fifteen carbon signals; DEPT experiments differentiated them as

Shuang Xi MEI et al.

3×CH₃, 4×CH₂, 2×CH, 6×C (Table 1). The above evidence and HRFAB⁺MS (found 265.1428, cacld. 265.1440) suggested that the molecular formula of 1 was $C_{15}H_{20}O_4$. ¹H NMR spectrum indicated an olefinic proton [87.19 (1H, brs, 1-H)], two methylene protons that linked with oxygen [$\delta 4.63$ (2H, brs, 12-H)], a pair of AB system protons $[\delta 2.74 (1H, d J=13.7Hz, 6\alpha-H) \text{ and } \delta 2.84 (1H, d J=13.7Hz, 6\beta-H)]$, a methine proton [δ1.80 (1H, m, 4-H)], four methylene protons [δ2.18 (2H, m, 2-H); δ1.43 (1H, m, 3α-H) and $\delta 1.90$ (1H, m, 3β -H)]; nine methyl protons [$\delta 2.06$ (3H, s, 13-H); $\delta 0.94$ (3H, s, 15-H); $\delta 0.93$ (3H, d J=6.8Hz, 14-H)]. From ¹H NMR, ¹³C NMR, H-¹H COSY and HMBC (Figure 2) spectra, two partial structures $[C_9H_{13}O_2(A) \text{ and } C_5H_5O_2(B)]$ that connected to a methylene carbon (C-6) were determined. The conclusion was supported by the EIMS m/z 264[M]⁺, 246[M-H₂O] (13), 153[M-(C₅H₅O₂+CH₂)] (56), 135[M-C₆H₇O₂-H₂O] (99) and $112[M-C_9H_{13}O_2+H]$ (100). The partial structures **A** and **B** were shown in Figure 3. The remaining problem was whether C₆ linked with C₇ or C₁₁. The X-ray diffraction solved the problem, and the relative configuration of 1 was identified by the X-ray diffraction (Figure 1).

Figure 3 The Structures of A and B

Table 1 The ¹H(500MHz) and ¹³C(125MHz) NMR Data of 1 in CDCl₃ (δ in ppm; J in Hz)

No	С	Н	No	С	Н
1	144.14(d)	7.19(br s)	9	175.51(s)	
2	24.19(t)	2.18(br s)	10	135.37(s)	
3	25.32(t)		11	159.54(s)	
3α		1.43(m)			
3β		1.90(m)			
4	35.07(d)	1.80(m)	12	72.50(t)	4.63(br s)
5	40.76(s)		13	13.17(q)	2.06(s)
6	31.74(t)		14	15.67(q)	0.93(d,J=6.8)
6α		2.74(d,J=13.7)	1		
6β		2.84(d,J=13.7)	1		
7	125.41(s)		15	21.29(q)	0.94(s)
8	175.51(s)				

References

- 1. Kunming Institute of Botany, Chinese Academy of Sciences, "Flora Yunnanica", Vol. 1, Science Press, 1977, P 808.
- C. M. Li, H. D. Sun etc., Acta Botanica Yunnanica, 1991, 13(3), 327.
- C. M. Li, H. D. Sun etc., Acta Botanica Yunnanica, 1993, 15(4), 403.
 Xishuangbanna Tropical Garden, Chinese Academy of Sciences, "Collected Research Papers on the Tropical Botany (IV) ", Yunnan University Press, 1996, P 125.
 5. T. Miyase, P. Rüed, C. H. Eugster *et al.*, *Helv Chem Acta* 1977, 60, 2770.

Received 8 July 1999