# A Novel Sesquiterpenoid from Coleus xanthanthus 

Shuang Xi MEI ${ }^{1}$, Chao Ming LI ${ }^{1}$, Hui Lan ZHENG ${ }^{1}$, Qi Tai ZHENG ${ }^{2}$, Yang $\mathrm{LU}^{2}$, Han Dong SUN ${ }^{1 *}$<br>${ }^{1}$ Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204<br>${ }^{2}$ Institute of Meteria Medica, Chinese Academy of Medical Sciences, Beijing 100050


#### Abstract

Phytochemical re-investigation of Coleus xanthanthus led to the isolation and identification of a novel sesquiterpenoid 1, named as 4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophiladien-8,12-olid-9-oic acid. The structure of 1 was elucidated by modern spectroscopic methods, especially by X-ray diffraction.


Keywords: Coleus xanthanthus, sesquiterpenoid, 4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophila -dien-8,12-olid 9-oic acid.

Coleus xanthanthus C.Y.Wu et Y.C.Huang is an endemic plant in Xishuangbanna of Yunnan province ${ }^{1}$. Its chemical constituents were studied by Prof. Chao Ming LI and five diterpenoid quinones had been obtained ${ }^{2-4}$. It was reported that some diterpenoid quinones had insect anti-feeding and anti-tumor activity ${ }^{5}$. In order to search for more significant compounds of the plant, we did a careful phytochemical investigation. From $70 \%$ acetone extract of the aerial part of this plant, a novel sesquiterpenoid $\mathbf{1}$, named as 4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophiladien-8,12-olid-9-oic acid, was isolated by repeated chromatography of silica gel columns. Its structure and relative configuration were elucidated by spectral methods, especially by the X-ray technique.

Figure 1 The Structure of $\mathbf{1}$


Figure 2 The Key HMBC Correlations of 1


Compound 1 was obtained as colorless crystals (from $\mathrm{CHCl}_{3}$ ), $\mathrm{mp}: 149.5 \sim 151.5^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+11.73\left(\mathrm{c}=0.0055, \mathrm{CHCl}_{3}\right)$. IR spectrum showed the following characteristic signals, a conjugated carboxy ( $3092,1654,1633 \mathrm{~cm}^{-1}$ ) and an $\alpha, \beta$-unsaturated lactone (1727, $1559,1200 \mathrm{~cm}^{-1}$ ), which was supported by the UV spectrum ( 239 nm ). Its ${ }^{13} \mathrm{C}$ NMR spectrum indicated fifteen carbon signals; DEPT experiments differentiated them as
$3 \times \mathrm{CH}_{3}, 4 \times \mathrm{CH}_{2}, 2 \times \mathrm{CH}, 6 \times \mathrm{C}$ (Table 1). The above evidence and $\mathrm{HRFAB}^{+} \mathrm{MS}$ (found 265.1428 , cacld. 265.1440) suggested that the molecular formula of $\mathbf{1}$ was $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} .{ }^{1} \mathrm{H}$ NMR spectrum indicated an olefinic proton $[\delta 7.19(1 \mathrm{H}$, brs, $1-\mathrm{H})]$, two methylene protons that linked with oxygen [ $\delta 4.63(2 \mathrm{H}$, brs, $12-\mathrm{H})$ ], a pair of AB system protons $[\delta 2.74(1 \mathrm{H}, \mathrm{d} \mathrm{J}=13.7 \mathrm{~Hz}, 6 \alpha-\mathrm{H})$ and $\delta 2.84(1 \mathrm{H}, \mathrm{d} \mathrm{J}=13.7 \mathrm{~Hz}, 6 \beta-\mathrm{H})$ ], a methine proton [ $\delta 1.80(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ ], four methylene protons [ $\delta 2.18(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) ; \delta 1.43(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$ and $\delta 1.90(1 \mathrm{H}, \mathrm{m}, 3 \beta-\mathrm{H})$ ] ; nine methyl protons $[\delta 2.06(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}) ; \delta 0.94(3 \mathrm{H}, \mathrm{s}, 15-$ $\mathrm{H}) ; \delta 0.93(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6.8 \mathrm{~Hz}, 14-\mathrm{H})]$. From ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC (Figure 2) spectra, two partial structures $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}(\mathbf{A})\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{2}(\mathbf{B})\right]$ that connected to a methylene carbon (C-6) were determined. The conclusion was supported by the EIMS $\mathrm{m} / \mathrm{z} 264[\mathrm{M}]^{+}, 246\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right](13), 153\left[\mathrm{M}-\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{2}+\mathrm{CH}_{2}\right)\right](56), 135\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}\right]$ (99) and $112\left[\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}+\mathrm{H}\right]$ (100). The partial structures $\mathbf{A}$ and $\mathbf{B}$ were shown in Figure 3. The remaining problem was whether $\mathrm{C}_{6}$ linked with $\mathrm{C}_{7}$ or $\mathrm{C}_{11}$. The X-ray diffraction solved the problem, and the relative configuration of $\mathbf{1}$ was identified by the X -ray diffraction (Figure 1).

Figure 3 The Structures of A and B


A


B

Table 1 The ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR Data of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(\delta$ in ppm; J in Hz$)$

| No | C | H | No | C | H |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathbf{1}$ | $144.14(\mathrm{~d})$ | $7.19(\mathrm{br} \mathrm{s})$ | $\mathbf{9}$ | $175.51(\mathrm{~s})$ |  |
| $\mathbf{2}$ | $24.19(\mathrm{t})$ | $2.18(\mathrm{br} \mathrm{s})$ | $\mathbf{1 0}$ | $135.37(\mathrm{~s})$ |  |
| $\mathbf{3}$ | $25.32(\mathrm{t})$ |  | $\mathbf{1 1}$ | $159.54(\mathrm{~s})$ |  |
| $\mathbf{3} \boldsymbol{\alpha}$ |  | $1.43(\mathrm{~m})$ |  |  |  |
| $\mathbf{3} \boldsymbol{\beta}$ |  | $1.90(\mathrm{~m})$ |  | $72.50(\mathrm{t})$ |  |
| $\mathbf{4}$ | $35.07(\mathrm{~d})$ | $1.80(\mathrm{~m})$ | $\mathbf{1 2}$ | $13.17(\mathrm{q})$ | $4.63(\mathrm{br} \mathrm{s})$ |
| $\mathbf{5}$ | $40.76(\mathrm{~s})$ |  | $\mathbf{1 3}$ | $2.06(\mathrm{~s})$ |  |
| $\mathbf{6}$ | $31.74(\mathrm{t})$ |  | $\mathbf{1 4}$ |  | $0.93(\mathrm{~d}, \mathrm{~J}=6.8)$ |
| $\mathbf{6} \boldsymbol{\alpha}$ |  | $2.74(\mathrm{~d}, \mathrm{~J}=13.7)$ |  |  |  |
| $\mathbf{6} \boldsymbol{\beta}$ |  | $2.84(\mathrm{~d}, \mathrm{~J}=13.7)$ |  |  |  |
| $\mathbf{7}$ |  |  | $\mathbf{1 5}$ | $21.29(\mathrm{q})$ | $0.94(\mathrm{~s})$ |
| $\mathbf{8}$ | $125.41(\mathrm{~s})$ |  |  |  |  |

## References

1. Kunming Institute of Botany, Chinese Academy of Sciences, " Flora Yunnanica", Vol. 1, Science Press, 1977, P 808
2. C. M. Li, H. D. Sun etc., Acta Botanica Yunnanica, 1991, 13 (3), 327.
3. C. M. Li, H. D. Sun etc., Acta Botanica Yunnanica, 1993, $15(4), 403$.
4. Xishuangbanna Tropical Garden, Chinese Academy of Sciences, " Collected Research Papers on the Tropical Botany (IV) ", Yunnan University Press, 1996, P 125.
5. T. Miyase, P. Rüed, C. H. Eugster et al., Helv Chem Acta 1977, 60, 2770.

Received 8 July 1999

